How To Find Center Of Mass Calculus
Show Mobile Notice Show All NotesHide All Notes
Mobile Notice
You appear to be on a device with a "narrow" screen width (i.due east. you lot are probably on a mobile phone). Due to the nature of the mathematics on this site it is best views in landscape style. If your device is not in mural mode many of the equations will run off the side of your device (should exist able to scroll to see them) and some of the menu items will exist cutting off due to the narrow screen width.
Department 2-3 : Center Of Mass
In this section nosotros are going to find the center of mass or centroid of a sparse plate with uniform density \(\rho \). The center of mass or centroid of a region is the bespeak in which the region volition be perfectly balanced horizontally if suspended from that indicate.
Then, let's suppose that the plate is the region bounded by the two curves \(f\left( ten \right)\) and \(g\left( x \correct)\) on the interval \(\left[ {a,b} \right]\). So, nosotros want to notice the center of mass of the region below.
Nosotros'll first need the mass of this plate. The mass is,
\[\brainstorm{align*}Yard & = \rho \left( {{\mbox{Area of plate}}} \right)\\ & = \rho \int_{{\,a}}^{{\,b}}{{f\left( 10 \right) - g\left( x \correct)\,dx}}\end{marshal*}\]
Next, nosotros'll need the moments of the region. There are 2 moments, denoted by \({M_x}\) and \({M_y}\). The moments measure out the trend of the region to rotate nearly the \(x\) and \(y\)-axis respectively. The moments are given past,
Equations of Moments
\[\begin{marshal*}{M_x} & = \rho \int_{{\,a}}^{{\,b}}{{\frac{one}{2}\left( {{{\left[ {f\left( x \right)} \right]}^2} - {{\left[ {k\left( x \correct)} \right]}^ii}} \right)\,dx}}\\ {M_y} & = \rho \int_{{\,a}}^{{\,b}}{{x\left( {f\left( x \correct) - g\left( x \right)} \right)\,dx}}\end{align*}\]
The coordinates of the center of mass, \(\left( {\overline{x},\overline{y}} \correct)\), are so,
Center of Mass Coordinates
\[\begin{align*}\overline{x} & = \frac{{{M_y}}}{M} = \frac{{\int_{{\,a}}^{{\,b}}{{x\left( {f\left( 10 \correct) - thou\left( x \correct)} \right)\,dx}}}}{{\int_{{\,a}}^{{\,b}}{{f\left( x \right) - g\left( x \right)\,dx}}}} = \frac{1}{A}\int_{{\,a}}^{{\,b}}{{x\left( {f\left( x \correct) - g\left( 10 \right)} \right)\,dx}}\\ \overline{y} & = \frac{{{M_x}}}{M} = \frac{{\int_{{\,a}}^{{\,b}}{{\frac{1}{two}\left( {{{\left[ {f\left( x \right)} \right]}^two} - {{\left[ {g\left( x \right)} \right]}^ii}} \right)\,dx}}}}{{\int_{{\,a}}^{{\,b}}{{f\left( ten \right) - g\left( x \right)\,dx}}}} = \frac{one}{A}\int_{{\,a}}^{{\,b}}{{\frac{1}{2}\left( {{{\left[ {f\left( x \right)} \right]}^2} - {{\left[ {g\left( ten \right)} \correct]}^2}} \correct)\,dx}}\terminate{marshal*}\]
where,
\[A = \int_{{\,a}}^{{\,b}}{{f\left( ten \correct) - g\left( x \right)\,dx}}\]
Note that the density, \(\rho \), of the plate cancels out and so isn't really needed.
Let'due south work a couple of examples.
Instance one Make up one's mind the eye of mass for the region bounded by \(y = two\sin \left( {2x} \correct)\), \(y = 0\) on the interval \(\left[ {0,\displaystyle \frac{\pi }{two}} \right]\).
Show Solution
Hither is a sketch of the region with the center of mass denoted with a dot.
Let's first get the area of the region.
\[\begin{align*}A & = \int_{{\,0}}^{{\,\frac{\pi }{2}}}{{2\sin \left( {2x} \right)\,dx}}\\ & = \left. { - \cos \left( {2x} \correct)} \right|_0^{\frac{\pi }{2}}\\ & = 2\finish{align*}\]
Now, the moments (without density since information technology will just drop out) are,
\[\brainstorm{array}{*{20}{c}}\brainstorm{aligned}{M_x} & = \int_{{\,0}}^{{\,\frac{\pi }{2}}}{{ii{{\sin }^2}\left( {2x} \right)\,dx}}\\ & = \int_{{\,0}}^{{\,\frac{\pi }{2}}}{{ane - \cos \left( {4x} \right)\,dx}}\\ & = \left. {\left( {x - \frac{1}{4}\sin \left( {4x} \right)} \right)} \right|_0^{\frac{\pi }{two}}\\ & = \frac{\pi }{2}\stop{aligned}& \hspace{0.5in} &\brainstorm{aligned}{M_y} & = \int_{{\,0}}^{{\,\frac{\pi }{2}}}{{2x\sin \left( {2x} \right)\,dx}}\hspace{0.25in}{\mbox{integrating by parts}}...\\ & = - \left. {x\cos \left( {2x} \right)} \correct|_0^{\frac{\pi }{2}} + \int_{{\,0}}^{{\,\frac{\pi }{2}}}{{\cos \left( {2x} \correct)\,dx}}\\ & = - \left. {ten\cos \left( {2x} \right)} \right|_0^{\frac{\pi }{2}} + \left. {\frac{1}{2}\sin \left( {2x} \right)} \right|_0^{\frac{\pi }{ii}}\\ & = \frac{\pi }{2}\end{aligned}\stop{array}\]
The coordinates of the heart of mass are and then,
\[\brainstorm{marshal*}\overline{x} & = \frac{{{}^{\pi }/{}_{two}}}{ii} = \frac{\pi }{iv}\\ \overline{y} & = \frac{{{}^{\pi }/{}_{two}}}{ii} = \frac{\pi }{4}\stop{align*}\]
Again, note that we didn't put in the density since it volition cancel out.
So, the center of mass for this region is \(\left( {\frac{\pi }{four},\frac{\pi }{4}} \right)\).
Example ii Decide the heart of mass for the region bounded past \(y = {x^iii}\) and \(y = \sqrt ten \).
Evidence Solution
The 2 curves intersect at \(x = 0\) and \(x = 1\) and here is a sketch of the region with the eye of mass marked with a box.
We'll first get the area of the region.
\[\begin{align*}A & = \int_{{\,0}}^{{\,1}}{{\sqrt x - {x^3}\,dx}}\\ & = \left. {\left( {\frac{2}{3}{ten^{\frac{3}{2}}} - \frac{1}{iv}{10^4}} \right)} \right|_0^1\\ & = \frac{5}{{12}}\end{align*}\]
Now the moments, again without density, are
\[\begin{array}{*{20}{c}}\begin{aligned}{M_x} & = \int_{{\,0}}^{{\,1}}{{\frac{1}{2}\left( {x - {x^6}} \right)\,dx}}\\ & = \left. {\frac{1}{2}\left( {\frac{one}{2}{x^2} - \frac{ane}{vii}{x^7}} \correct)} \right|_0^one\\ & = \frac{5}{{28}} \\ & \finish{aligned}& \hspace{0.5in} &\brainstorm{aligned}{M_y} & = \int_{{\,0}}^{{\,1}}{{x\left( {\sqrt 10 - {10^3}} \right)\,dx}}\\ & = \int_{{\,0}}^{{\,1}}{{{10^{\frac{3}{ii}}} - {10^four}\,dx}}\\ & = \left. {\left( {\frac{2}{5}{x^{\frac{5}{2}}} - \frac{1}{five}{ten^v}} \right)} \right|_0^ane\\ & = \frac{1}{v}\terminate{aligned}\terminate{assortment}\]
The coordinates of the center of mass is then,
\[\begin{align*}\overline{x} & = \frac{{{one}/{5}\;}}{{{5}/{{12}}\;}} = \frac{{12}}{{25}}\\ \overline{y} & = \frac{{{5}/{{28}}\;}}{{{5}/{{12}}\;}} = \frac{3}{7}\finish{marshal*}\]
The coordinates of the eye of mass are then,\(\left( {\frac{{12}}{{25}},\frac{three}{vii}} \correct)\).
Source: https://tutorial.math.lamar.edu/classes/calcii/centerofmass.aspx
Posted by: ryanlesse1976.blogspot.com
0 Response to "How To Find Center Of Mass Calculus"
Post a Comment